/* * Copyright (C) 2005-2007 by egnite Software GmbH. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * For additional information see http://www.ethernut.de/ * */ /*! * \file dev/x12rtc.c * \brief RTC and EEPROM routines for the Intersil X12xx clock chips. * * \verbatim * * $Log$ * Revision 1.10 2009/02/13 14:52:05 haraldkipp * Include memdebug.h for heap management debugging support. * * Revision 1.9 2009/01/17 11:26:46 haraldkipp * Getting rid of two remaining BSD types in favor of stdint. * Replaced 'u_int' by 'unsinged int' and 'uptr_t' by 'uintptr_t'. * * Revision 1.8 2008/08/11 06:59:42 haraldkipp * BSD types replaced by stdint types (feature request #1282721). * * Revision 1.7 2008/07/09 14:25:06 haraldkipp * Made EEPROM_PAGE_SIZE configurable. Does it really make sense? * * Revision 1.6 2007/06/03 08:50:38 haraldkipp * Automatic detection of X1226 or X1286. * Fixed wrong century determination for X1226. * Debugging output added. * * Revision 1.5 2007/05/02 11:29:25 haraldkipp * Failed to store more than one EEPROM page. Removing NutSleep() from * X12WaitReady() fixes this. Why? * * Revision 1.4 2006/10/05 17:21:53 haraldkipp * Hardware specific functions marked deprecated. * Hardcoded register addresses and values replaced by macros. * * Revision 1.3 2006/03/02 19:57:34 haraldkipp * ICCARM insists on a (void *) typecast for the second parameter of memcpy(). * * Revision 1.2 2006/01/19 18:41:34 haraldkipp * Year translation was completely broken. Fixed. * * Revision 1.1 2005/10/24 10:21:57 haraldkipp * Initial check in. * * * \endverbatim */ #define NUT_DEPRECATED #include #include #include #include #include #include #include #include #include #include #if 0 /* Use for local debugging. */ #define X12DEBUG #endif #ifdef X12DEBUG #define NUTDEBUG #include #endif #ifndef I2C_SLA_RTC #define I2C_SLA_RTC 0x6F #endif #ifndef I2C_SLA_EEPROM #define I2C_SLA_EEPROM 0x57 #endif #ifndef EEPROM_PAGE_SIZE #define EEPROM_PAGE_SIZE 64 #endif static uint8_t rtc_chip; static uint32_t rtc_status; /*! * \brief Enable or disable write access. * * \param on Write access is disabled if this parameter is 0, or * enabled otherwise. * * \return 0 on success or -1 in case of an error. */ static int X12WriteEnable(int on) { int rc; uint8_t buf[3]; buf[0] = 0; buf[1] = 0x3F; if (on) { buf[2] = 0x02; if ((rc = TwMasterTransact(I2C_SLA_RTC, buf, 3, 0, 0, NUT_WAIT_INFINITE)) == 0) { buf[2] = 0x06; rc = TwMasterTransact(I2C_SLA_RTC, buf, 3, 0, 0, NUT_WAIT_INFINITE); } } else { buf[2] = 0x00; rc = TwMasterTransact(I2C_SLA_RTC, buf, 3, 0, 0, NUT_WAIT_INFINITE); } return rc; } /*! * \brief Wait until non-volatile write cycle finished. * * \return 0 on success or -1 in case of an error. */ static int X12WaitReady(void) { uint8_t poll; int cnt = 200; /* Ethernut 3 needs about 50 loops, so this is quite save. */ /* * Poll for write cycle finished. We can't use a sleep here, because our * X12xx routines are not re-entrant. */ while (--cnt && TwMasterTransact(I2C_SLA_EEPROM, 0, 0, &poll, 1, NUT_WAIT_INFINITE) == -1); #ifdef X12DEBUG printf("[RtcRdy:%d]", 200 - cnt); #endif return cnt ? 0 : -1; } /*! * \brief Read RTC registers. * * \param reg The first register to read. * \param buff Pointer to a buffer that receives the register contents. * \param cnt The number of registers to read. * * \return 0 on success or -1 in case of an error. */ int X12RtcReadRegs(uint8_t reg, uint8_t *buff, size_t cnt) { int rc = -1; uint8_t wbuf[2]; wbuf[0] = 0; wbuf[1] = reg; if (TwMasterTransact(I2C_SLA_RTC, wbuf, 2, buff, cnt, NUT_WAIT_INFINITE) == cnt) { #ifdef X12DEBUG printf("[Rtc$%02x>", reg); while(cnt--) { printf(" %02x", *buff++); } putchar(']'); #endif rc = 0; } return rc; } /*! * \brief Write to RTC registers. * * \param nv Must be set to 1 when writing to non-volatile registers. * In this case the routine will poll for write cycle * completion before returning to the caller. Set to zero * if writing to volatile registers. * \param buff This buffer must contain all bytes to be transfered to * the RTC chip, including the register address. * \param cnt Number of valid bytes in the buffer. * * \return 0 on success or -1 in case of an error. */ int X12RtcWrite(int nv, const uint8_t *buff, size_t cnt) { int rc; if ((rc = X12WriteEnable(1)) == 0) { rc = TwMasterTransact(I2C_SLA_RTC, buff, cnt, 0, 0, NUT_WAIT_INFINITE); if (rc == 0 && nv) { rc = X12WaitReady(); } X12WriteEnable(0); #ifdef X12DEBUG printf("[Rtc$%02X<", *++buff); cnt -= 2; while(cnt--) { printf(" %02x", *++buff); } putchar(']'); #endif } return rc; } /*! * \brief Get date and time from an X12xx hardware clock. * * \deprecated New applications must use NutRtcGetTime(). * * \param tm Points to a structure that receives the date and time * information. * * \return 0 on success or -1 in case of an error. */ int X12RtcGetClock(NUTRTC *rtc, struct _tm *tm) { int rc; uint8_t data[8]; if ((rc = X12RtcReadRegs(X12RTC_SC, data, 8)) == 0) { tm->tm_sec = BCD2BIN(data[0]); tm->tm_min = BCD2BIN(data[1]); tm->tm_hour = BCD2BIN(data[2] & 0x3F); tm->tm_mday = BCD2BIN(data[3]); tm->tm_mon = BCD2BIN(data[4]) - 1; if (rtc_chip) { tm->tm_year = BCD2BIN(data[5]) + 100; } else { tm->tm_year = BCD2BIN(data[5]); if (data[7] == 0x20) { tm->tm_year += 100; } } tm->tm_wday = data[6]; } return rc; } /*! * \brief Set an X12xx hardware clock. * * \deprecated New applications must use NutRtcSetTime(). * * New time will be taken over at the beginning of the next second. * * \param tm Points to a structure which contains the date and time * information. * * \return 0 on success or -1 in case of an error. */ int X12RtcSetClock(NUTRTC *rtc, const struct _tm *tm) { uint8_t data[10]; memset(data, 0, sizeof(data)); if (tm) { data[1] = X12RTC_SC; data[2] = BIN2BCD(tm->tm_sec); data[3] = BIN2BCD(tm->tm_min); data[4] = BIN2BCD(tm->tm_hour) | 0x80; data[5] = BIN2BCD(tm->tm_mday); data[6] = BIN2BCD(tm->tm_mon + 1); if (rtc_chip) { /* X1286. */ data[7] = BIN2BCD(tm->tm_year % 100); } /* X1226. */ else if (tm->tm_year > 99) { data[7] = BIN2BCD(tm->tm_year - 100); data[9] = 0x20; } else { data[7] = BIN2BCD(tm->tm_year); data[9] = 0x19; } data[8] = tm->tm_wday; } return X12RtcWrite(0, data, 10); } /*! * \brief Get alarm date and time of an X12xx hardware clock. * * \deprecated New applications must use NutRtcGetAlarm(). * * \param idx Zero based index. Two alarms are supported. * \param tm Points to a structure that receives the date and time * information. * \param aflgs Points to an unsigned long that receives the enable flags. * * \return 0 on success or -1 in case of an error. * */ int X12RtcGetAlarm(NUTRTC *rtc, int idx, struct _tm *tm, int *aflgs) { int rc; uint8_t data[8]; *aflgs = 0; memset(tm, 0, sizeof(struct _tm)); if ((rc = X12RtcReadRegs(idx * 8, data, 8)) == 0) { if (data[0] & X12RTC_SCA_ESC) { *aflgs |= RTC_ALARM_SECOND; tm->tm_sec = BCD2BIN(data[0] & 0x7F); } if (data[1] & X12RTC_MNA_EMN) { *aflgs |= RTC_ALARM_MINUTE; tm->tm_min = BCD2BIN(data[1]); } if (data[2] & X12RTC_HRA_EHR) { *aflgs |= RTC_ALARM_HOUR; tm->tm_hour = BCD2BIN(data[2] & ~0x80); } if (data[3] & X12RTC_DTA_EDT) { *aflgs |= RTC_ALARM_MDAY; tm->tm_mday = BCD2BIN(data[3]); } if (data[4] & X12RTC_MOA_EMO) { *aflgs |= RTC_ALARM_MONTH; tm->tm_mon = BCD2BIN(data[4]) - 1; } if (data[6] & X12RTC_DWA_EDW) { *aflgs |= RTC_ALARM_WDAY; tm->tm_wday = BCD2BIN(data[6]); } } return rc; } /*! * \brief Set alarm of an X12xx hardware clock. * * \deprecated New applications must use NutRtcSetAlarm(). * * \param idx Zero based index. Two alarms are supported. * \param tm Points to a structure which contains the date and time * information. May be NULL to clear the alarm. * \param aflgs Each bit enables a specific comparision. * - Bit 0: Seconds * - Bit 1: Minutes * - Bit 2: Hours * - Bit 3: Day of month * - Bit 4: Month * - Bit 7: Day of week (Sunday is zero) * * \return 0 on success or -1 in case of an error. */ int X12RtcSetAlarm(NUTRTC *rtc, int idx, const struct _tm *tm, int aflgs) { uint8_t data[10]; memset(data, 0, sizeof(data)); data[1] = idx * 8; if (tm) { if (aflgs & RTC_ALARM_SECOND) { data[2] = BIN2BCD(tm->tm_sec) | X12RTC_SCA_ESC; } if (aflgs & RTC_ALARM_MINUTE) { data[3] = BIN2BCD(tm->tm_min) | X12RTC_MNA_EMN; } if (aflgs & RTC_ALARM_HOUR) { data[4] = BIN2BCD(tm->tm_hour) | X12RTC_HRA_EHR; } if (aflgs & RTC_ALARM_MDAY) { data[5] = BIN2BCD(tm->tm_mday) | X12RTC_DTA_EDT; } if (aflgs & RTC_ALARM_MONTH) { data[6] = BIN2BCD(tm->tm_mon + 1) | X12RTC_MOA_EMO; } if (aflgs & RTC_ALARM_WDAY) { data[8] = BIN2BCD(tm->tm_wday) | X12RTC_DWA_EDW; } } return X12RtcWrite(1, data, 10); } /*! * \brief Query RTC status flags. * * \deprecated New applications must use NutRtcGetStatus(). * * \param sflgs Points to an unsigned long that receives the status flags. * - Bit 0: Power fail. * - Bit 5: Alarm 0 occured. * - Bit 6: Alarm 1 occured. * * \return 0 on success or -1 in case of an error. */ int X12RtcGetStatus(NUTRTC *rtc, uint32_t *sflgs) { int rc; uint8_t data; if ((rc = X12RtcReadRegs(X12RTC_SR, &data, 1)) == 0) { rtc_status |= data; *sflgs = rtc_status; } return rc; } /*! * \brief Clear RTC status flags. * * \deprecated New applications must use NutRtcClearStatus(). * * \param sflgs Status flags to clear. * * \return Always 0. */ int X12RtcClearStatus(NUTRTC *rtc, uint32_t sflgs) { rtc_status &= ~sflgs; return 0; } NUTRTC rtcX12x6 = { /*.dcb = */ NULL, /*!< Driver control block */ /*.rtc_init = */ X12Init, /*!< Hardware initialization, rtc_init */ /*.rtc_gettime = */ X12RtcGetClock, /*!< Read date and time, rtc_gettime */ /*.rtc_settime = */ X12RtcSetClock, /*!< Set date and time, rtc_settime */ /*.rtc_getalarm = */ X12RtcGetAlarm, /*!< Read alarm date and time, rtc_getalarm */ /*.rtc_setalarm = */ X12RtcSetAlarm, /*!< Set alarm date and time, rtc_setalarm */ /*.rtc_getstatus = */ X12RtcGetStatus, /*!< Read status flags, rtc_getstatus */ /*.rtc_clrstatus = */ X12RtcClearStatus, /*!< Clear status flags, rtc_clrstatus */ /*.alarm = */ NULL, /*!< Handle for alarm event queue, not supported right now */ }; /*! * \brief Read contents from non-volatile EEPROM. * * \param addr Start location. * \param buff Points to a buffer that receives the contents. * \param len Number of bytes to read. * * \return 0 on success or -1 in case of an error. */ int X12EepromRead(unsigned int addr, void *buff, size_t len) { int rc = -1; uint8_t wbuf[2]; wbuf[0] = (uint8_t)(addr >> 8); wbuf[1] = (uint8_t)addr; if (TwMasterTransact(I2C_SLA_EEPROM, wbuf, 2, buff, len, NUT_WAIT_INFINITE) == len) { rc = 0; } return rc; } /*! * \brief Store buffer contents in non-volatile EEPROM. * * The EEPROM of the X122x has a capacity of 512 bytes, while the X1286 is * able to store 32 kBytes. * * \param addr Storage start location. * \param buff Points to a buffer that contains the bytes to store. * \param len Number of valid bytes in the buffer. * * \return 0 on success or -1 in case of an error. */ int X12EepromWrite(unsigned int addr, const void *buff, size_t len) { int rc = 0; uint8_t *wbuf; size_t wlen; const uint8_t *wp = buff; /* * Loop for each page to be written to. */ while (len) { /* Do not cross page boundaries. */ wlen = EEPROM_PAGE_SIZE - (addr & (EEPROM_PAGE_SIZE - 1)); if (wlen > len) { wlen = len; } /* Allocate and set a TWI write buffer. */ if ((wbuf = malloc(wlen + 2)) == 0) { rc = -1; break; } wbuf[0] = (uint8_t)(addr >> 8); wbuf[1] = (uint8_t)addr; memcpy(wbuf + 2, (void *)wp, wlen); /* Enable EEPROM write access and send the write buffer. */ if ((rc = X12WriteEnable(1)) == 0) { rc = TwMasterTransact(I2C_SLA_EEPROM, wbuf, wlen + 2, 0, 0, NUT_WAIT_INFINITE); } /* Release the buffer and check the result. */ free(wbuf); if (rc) { break; } len -= wlen; addr += wlen; wp += wlen; /* Poll for write cycle finished. */ if ((rc = X12WaitReady()) != 0) { break; } } X12WriteEnable(0); return rc; } /*! * \brief Initialize the interface to an Intersil X12xx hardware clock. * * \deprecated New applications must use NutRegisterRtc(). * * \return 0 on success or -1 in case of an error. * */ int X12Init(NUTRTC *rtc) { int rc; uint32_t tmp; uint8_t data[2]; /* Initialize I2C bus. */ if ((rc = TwInit(0)) == 0) { /* Query RTC status. */ if ((rc = X12RtcGetStatus(rtc, &tmp)) == 0) { /* * If I2C initialization and RTC status query succeeded, try * to determine the chip we got. On Ethernut 3.0 Rev-D the * X1226 had been mounted, while the X1286 is used on Rev-E * boards. We read register address 0x0037, which is the * century on the X1226, but the hundreds of seconds on the * X1286. Thus, the register contents on the latter will cange * every 10 milliseconds, while it is fixed to 19 or 20 on * the first one. */ X12RtcReadRegs(X128xRTC_SSEC, &data[0], 1); NutSleep(20); X12RtcReadRegs(X128xRTC_SSEC, &data[1], 1); if (data[0] != data[1]) { rtc_chip = 1; } #ifdef X12DEBUG printf("[RTC=X12%c6]", rtc_chip ? '8' : '2'); #endif } } return rc; }