/* ======================================================================== * [PROJECT] SIR * [MODULE] Real Time Clock * [TITLE] High- and low level Routines for INtersil X1205 RTC chip * [FILE] rtc.c * [VSN] 1.0 * [CREATED] 13042007 * [LASTCHNGD] 131042007 * [COPYRIGHT] Copyright (C) STREAMIT BV 2010 * [PURPOSE] contains all interface- and low-level routines to * read/write date/time/status strings from the X1205 * ======================================================================== */ #define LOG_MODULE LOG_RTC_MODULE #include #include #include #include #include #include #include #include "rtc.h" #include "portio.h" #define I2C_SLA_RTC 0x6F #define I2C_SLA_EEPROM 0x57 #define EEPROM_PAGE_SIZE 64 static u_long rtc_status; /*! * \brief Enable or disable write access. * * \param on Write access is disabled if this parameter is 0, or * enabled otherwise. * * \return 0 on success or -1 in case of an error. */ static int X12WriteEnable(int on) { int rc; u_char buf[3]; buf[0] = 0; buf[1] = 0x3F; if (on) { buf[2] = 0x02; if ((rc = TwMasterTransact(I2C_SLA_RTC, buf, 3, 0, 0, NUT_WAIT_INFINITE)) == 0) { buf[2] = 0x06; rc = TwMasterTransact(I2C_SLA_RTC, buf, 3, 0, 0, NUT_WAIT_INFINITE); } } else { buf[2] = 0x00; rc = TwMasterTransact(I2C_SLA_RTC, buf, 3, 0, 0, NUT_WAIT_INFINITE); } return(rc); } /*! * \brief Wait until non-volatile write cycle finished. * * \return 0 on success or -1 in case of an error. */ static int X12WaitReady(void) { u_char poll; int cnt = 20; /* Poll for write cycle finished. */ while (--cnt && TwMasterTransact(I2C_SLA_EEPROM, 0, 0, &poll, 1, NUT_WAIT_INFINITE) == -1) { NutSleep(1); } return(cnt ? 0 : -1); } /*! * \brief Read RTC registers. * * \param reg The first register to read. * \param buff Pointer to a buffer that receives the register contents. * \param cnt The number of registers to read. * * \return 0 on success or -1 in case of an error. */ int X12RtcReadRegs(u_char reg, u_char *buff, size_t cnt) { int rc = -1; u_char wbuf[2]; wbuf[0] = 0; wbuf[1] = reg; if (TwMasterTransact(I2C_SLA_RTC, wbuf, 2, buff, cnt, NUT_WAIT_INFINITE) == cnt) { rc = 0; } return(rc); } /*! * \brief Write to RTC registers. * * \param nv Must be set to 1 when writing to non-volatile registers. * In this case the routine will poll for write cycle * completion before returning to the caller. Set to zero * if writing to volatile registers. * \param buff This buffer must contain all bytes to be transfered to * the RTC chip, including the register address. * \param cnt Number of valid bytes in the buffer. * * \return 0 on success or -1 in case of an error. */ int X12RtcWrite(int nv, CONST u_char *buff, size_t cnt) { int rc; if ((rc = X12WriteEnable(1)) == 0) { rc = TwMasterTransact(I2C_SLA_RTC, buff, cnt, 0, 0, NUT_WAIT_INFINITE); if (rc == 0 && nv) { rc = X12WaitReady(); } X12WriteEnable(0); } return(rc); } /*! * \brief Get date and time from an X12xx hardware clock. * * \deprecated New applications must use NutRtcGetTime(). * * \param tm Points to a structure that receives the date and time * information. * * \return 0 on success or -1 in case of an error. */ int X12RtcGetClock(struct _tm *tm) { int rc; u_char data[8]; if ((rc = X12RtcReadRegs(X12RTC_SC, data, 8)) == 0) { tm->tm_sec = BCD2BIN(data[0]); tm->tm_min = BCD2BIN(data[1]); tm->tm_hour = BCD2BIN(data[2] & 0x3F); tm->tm_mday = BCD2BIN(data[3]); tm->tm_mon = BCD2BIN(data[4]) - 1; tm->tm_year = BCD2BIN(data[5]) + 100; if (BCD2BIN(data[7]) > 0x19) { tm->tm_year += 100; } tm->tm_wday = data[6]; } return(rc); } /*! * \brief Set an X12xx hardware clock. * * \deprecated New applications must use NutRtcSetTime(). * * New time will be taken over at the beginning of the next second. * * \param tm Points to a structure which contains the date and time * information. * * \return 0 on success or -1 in case of an error. */ int X12RtcSetClock(CONST struct _tm *tm) { u_char data[10]; memset(data, 0, sizeof(data)); if (tm) { data[1] = X12RTC_SC; data[2] = BIN2BCD(tm->tm_sec); data[3] = BIN2BCD(tm->tm_min); data[4] = BIN2BCD(tm->tm_hour) | 0x80; data[5] = BIN2BCD(tm->tm_mday); data[6] = BIN2BCD(tm->tm_mon + 1); if (tm->tm_year > 99) { data[7] = BIN2BCD(tm->tm_year - 100); data[9] = 0x20; } else { data[7] = BIN2BCD(tm->tm_year); data[9] = 0x19; } data[8] = tm->tm_wday; } return(X12RtcWrite(0, data, 10)); } /*! * \brief Get alarm date and time of an X12xx hardware clock. * * \deprecated New applications must use NutRtcGetAlarm(). * * \param idx Zero based index. Two alarms are supported. * \param tm Points to a structure that receives the date and time * information. * \param aflgs Points to an unsigned long that receives the enable flags. * * \return 0 on success or -1 in case of an error. * */ int X12RtcGetAlarm(int idx, struct _tm *tm, int *aflgs) { int rc; u_char data[8]; *aflgs = 0; memset(tm, 0, sizeof(struct _tm)); if ((rc = X12RtcReadRegs(idx * 8, data, 8)) == 0) { if (data[0] & X12RTC_SCA_ESC) { *aflgs |= RTC_ALARM_SECOND; tm->tm_sec = BCD2BIN(data[0] & 0x7F); } if (data[1] & X12RTC_MNA_EMN) { *aflgs |= RTC_ALARM_MINUTE; tm->tm_min = BCD2BIN(data[1]); } if (data[2] & X12RTC_HRA_EHR) { *aflgs |= RTC_ALARM_HOUR; tm->tm_hour = BCD2BIN(data[2] & ~0x80); } if (data[3] & X12RTC_DTA_EDT) { *aflgs |= RTC_ALARM_MDAY; tm->tm_mday = BCD2BIN(data[3]); } if (data[4] & X12RTC_MOA_EMO) { *aflgs |= RTC_ALARM_MONTH; tm->tm_mon = BCD2BIN(data[4]) - 1; } if (data[6] & X12RTC_DWA_EDW) { *aflgs |= RTC_ALARM_WDAY; tm->tm_wday = BCD2BIN(data[6]); } } return(rc); } /*! * \brief Set alarm of an X12xx hardware clock. * * \deprecated New applications must use NutRtcSetAlarm(). * * \param idx Zero based index. Two alarms are supported. * \param tm Points to a structure which contains the date and time * information. May be NULL to clear the alarm. * \param aflgs Each bit enables a specific comparision. * - Bit 0: Seconds * - Bit 1: Minutes * - Bit 2: Hours * - Bit 3: Day of month * - Bit 4: Month * - Bit 7: Day of week (Sunday is zero) * * \return 0 on success or -1 in case of an error. */ int X12RtcSetAlarm(int idx, CONST struct _tm *tm, int aflgs) { u_char data[10]; memset(data, 0, sizeof(data)); data[1] = idx * 8; if (tm) { if (aflgs & RTC_ALARM_SECOND) { data[2] = BIN2BCD(tm->tm_sec) | X12RTC_SCA_ESC; } if (aflgs & RTC_ALARM_MINUTE) { data[3] = BIN2BCD(tm->tm_min) | X12RTC_MNA_EMN; } if (aflgs & RTC_ALARM_HOUR) { data[4] = BIN2BCD(tm->tm_hour) | X12RTC_HRA_EHR; } if (aflgs & RTC_ALARM_MDAY) { data[5] = BIN2BCD(tm->tm_mday) | X12RTC_DTA_EDT; } if (aflgs & RTC_ALARM_MONTH) { data[6] = BIN2BCD(tm->tm_mon + 1) | X12RTC_MOA_EMO; } if (aflgs & RTC_ALARM_WDAY) { data[8] = BIN2BCD(tm->tm_wday) | X12RTC_DWA_EDW; } } return(X12RtcWrite(1, data, 10)); } /*! * \brief Query RTC status flags. * * \deprecated New applications must use NutRtcGetStatus(). * * \param sflgs Points to an unsigned long that receives the status flags. * - Bit 0: Power fail. * - Bit 5: Alarm 0 occured. * - Bit 6: Alarm 1 occured. * * \return 0 on success or -1 in case of an error. */ int X12RtcGetStatus(u_long *sflgs) { int rc; u_char data; if ((rc = X12RtcReadRegs(X12RTC_SR, &data, 1)) == 0) { rtc_status |= data; *sflgs = rtc_status; } return(rtc_status); } /*! * \brief Clear RTC status flags. * * \deprecated New applications must use NutRtcClearStatus(). * * \param sflgs Status flags to clear. * * \return Always 0. */ int X12RtcClearStatus(u_long sflgs) { rtc_status &= ~sflgs; return(0); } /*! * \brief Read contents from non-volatile EEPROM. * * \param addr Start location. * \param buff Points to a buffer that receives the contents. * \param len Number of bytes to read. * * \return 0 on success or -1 in case of an error. */ int X12EepromRead(u_int addr, void *buff, size_t len) { int rc = -1; u_char wbuf[2]; wbuf[0] = (u_char)(addr >> 8); wbuf[1] = (u_char)addr; if (TwMasterTransact(I2C_SLA_EEPROM, wbuf, 2, buff, len, NUT_WAIT_INFINITE) == len) { rc = 0; } return(rc); } /*! * \brief Store buffer contents in non-volatile EEPROM. * * The EEPROM of the X122x has a capacity of 512 bytes, while the X1286 is * able to store 32 kBytes. * * \param addr Storage start location. * \param buff Points to a buffer that contains the bytes to store. * \param len Number of valid bytes in the buffer. * * \return 0 on success or -1 in case of an error. */ int X12EepromWrite(u_int addr, CONST void *buff, size_t len) { int rc = 0; u_char *wbuf; size_t wlen; CONST u_char *wp = buff; /* * Loop for each page to be written to. */ while (len) { /* Do not cross page boundaries. */ wlen = EEPROM_PAGE_SIZE - (addr & (EEPROM_PAGE_SIZE - 1)); if (wlen > len) { wlen = len; } /* Allocate and set a TWI write buffer. */ if ((wbuf = malloc(wlen + 2)) == 0) { rc = -1; break; } wbuf[0] = (u_char)(addr >> 8); wbuf[1] = (u_char)addr; memcpy(wbuf + 2, (void *)wp, wlen); /* Enable EEPROM write access and send the write buffer. */ if ((rc = X12WriteEnable(1)) == 0) { rc = TwMasterTransact(I2C_SLA_EEPROM, wbuf, wlen + 2, 0, 0, NUT_WAIT_INFINITE); } /* Release the buffer and check the result. */ free(wbuf); if (rc) { break; } len -= wlen; addr += wlen; wp += wlen; /* Poll for write cycle finished. */ if ((rc = X12WaitReady()) != 0) { break; } } X12WriteEnable(0); return(rc); } /*! * \brief Initialize the interface to an Intersil X12xx hardware clock. * * \deprecated New applications must use NutRegisterRtc(). * * \return 0 on success or -1 in case of an error. * */ int X12Init(void) { int rc; u_long tmp; if ((rc = TwInit(0)) == 0) { rc = X12RtcGetStatus(&tmp); } return (rc); }