usart.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. /*!
  2. * Copyright (C) 2001-2010 by egnite Software GmbH
  3. *
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions
  8. * are met:
  9. *
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. Neither the name of the copyright holders nor the names of
  16. * contributors may be used to endorse or promote products derived
  17. * from this software without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  20. * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  21. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  22. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  23. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  24. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26. * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
  27. * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  28. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
  29. * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  30. * SUCH DAMAGE.
  31. *
  32. * For additional information see http://www.ethernut.de/
  33. */
  34. /*
  35. * $Log: usart.c,v $
  36. *
  37. */
  38. #include <cfg/clock.h>
  39. #include <sys/atom.h>
  40. #include <sys/event.h>
  41. #include <sys/timer.h>
  42. #include <dev/irqreg.h>
  43. #include <dev/gpio.h>
  44. #include <dev/usartavr32.h>
  45. #include <avr32/io.h>
  46. #include <arch/avr32/gpio.h>
  47. // Work around missing defines in some AVR32 models
  48. #if !defined(AVR32_USART_CSR_MASK)
  49. #define AVR32_USART_CSR_MASK 0xFFFFFFFF
  50. #endif
  51. #if !defined(AVR32_USART_IDR_MASK)
  52. #define AVR32_USART_IDR_MASK 0xFFFFFFFF
  53. #endif
  54. /*!
  55. * \addtogroup xgNutArchAvr32Usart
  56. */
  57. /*@{*/
  58. /* \brief ASCII code for software flow control, starts transmitter. */
  59. #define ASCII_XON 0x11
  60. /* \brief ASCII code for software flow control, stops transmitter. */
  61. #define ASCII_XOFF 0x13
  62. /* \brief XON transmit pending flag. */
  63. #define XON_PENDING 0x10
  64. /* \brief XOFF transmit pending flag. */
  65. #define XOFF_PENDING 0x20
  66. /* \brief XOFF sent flag. */
  67. #define XOFF_SENT 0x40
  68. /* \brief XOFF received flag. */
  69. #define XOFF_RCVD 0x80
  70. /*!
  71. * \brief Receiver error flags.
  72. */
  73. static ureg_t rx_errors;
  74. /*!
  75. * \brief Enables software flow control if not equal zero.
  76. */
  77. static uint_fast8_t flow_control;
  78. /*!
  79. * \brief Transmit address frame, if not zero.
  80. */
  81. static uint_fast8_t tx_aframe;
  82. #ifdef UART_HDX_BIT
  83. /* define in cfg/modem.h */
  84. #ifdef UART_HDX_FLIP_BIT /* same as RTS toggle by Windows NT driver */
  85. #define UART_HDX_TX cbi
  86. #define UART_HDX_RX sbi
  87. #else /* previous usage by Ethernut */
  88. #define UART_HDX_TX sbi
  89. #define UART_HDX_RX cbi
  90. #endif
  91. #endif
  92. #ifdef UART_HDX_BIT
  93. /*!
  94. * \brief Enables half duplex control if not equal zero.
  95. *
  96. * This variable exists only if the hardware configuration defines a
  97. * port bit to switch between receive and transmit mode.
  98. */
  99. static uint_fast8_t hdx_control;
  100. #endif
  101. //#if defined(UART_RTS_BIT) || defined(US_MODE_HWHANDSHAKE)
  102. /*!
  103. * \brief Enables RTS control if not equal zero.
  104. *
  105. * This variable exists only if the hardware configuration defines a
  106. * port bit to control the RTS signal.
  107. */
  108. static uint_fast8_t rts_control;
  109. //#endif
  110. //#if defined(UART_CTS_BIT) || defined(US_MODE_HWHANDSHAKE)
  111. /*!
  112. * \brief Enables CTS sense if not equal zero.
  113. *
  114. * This variable exists only if the hardware configuration defines a
  115. * port bit to sense the CTS signal.
  116. */
  117. static uint_fast8_t cts_sense;
  118. //#endif
  119. #ifdef UART_CTS_BIT
  120. /*!
  121. * \brief USARTn CTS sense interrupt handler.
  122. *
  123. * This interrupt routine is called when the CTS line level is low.
  124. * Typical line drivers negate the signal, thus driving our port
  125. * low when CTS is active.
  126. *
  127. * This routine exists only if the hardware configuration defines a
  128. * port bit to sense the CTS signal.
  129. */
  130. static void Avr32UsartCts(void *arg)
  131. {
  132. /* Enable transmit interrupt. */
  133. //sbi(UCSRnB, UDRIE);
  134. /* Disable CTS sense interrupt. */
  135. //cbi(EIMSK, UART_CTS_BIT);
  136. }
  137. #endif
  138. #ifdef UART_HDX_BIT
  139. /*
  140. * \brief USARTn transmitter empty interrupt handler.
  141. *
  142. * Used with half duplex communication to switch from tranmit to receive
  143. * mode after the last character has been transmitted.
  144. *
  145. * This routine exists only if the hardware configuration defines a
  146. * port bit to switch between receive and transmit mode.
  147. *
  148. * \param arg Pointer to the transmitter ring buffer.
  149. */
  150. static void Avr32UsartTxEmpty(RINGBUF * rbf)
  151. {
  152. /*
  153. * Check if half duplex mode has been enabled and if all characters
  154. * had been sent out.
  155. */
  156. if (hdx_control && rbf->rbf_cnt == 0) {
  157. /* Switch to receiver mode. */
  158. UART_HDX_RX(UART_HDX_PORT, UART_HDX_BIT);
  159. }
  160. }
  161. #endif
  162. /*
  163. * \brief USARTn transmitter ready interrupt handler.
  164. *
  165. * \param rbf Pointer to the transmitter ring buffer.
  166. */
  167. static void Avr32UsartTxReady(RINGBUF * rbf)
  168. {
  169. register uint8_t *cp = rbf->rbf_tail;
  170. /*
  171. * Process pending software flow controls first.
  172. */
  173. if (flow_control & (XON_PENDING | XOFF_PENDING)) {
  174. if (flow_control & XON_PENDING) {
  175. outr(USARTn_BASE + AVR32_USART_THR, (ASCII_XOFF << AVR32_USART_THR_TXCHR_OFFSET) & AVR32_USART_THR_TXCHR_MASK);
  176. flow_control |= XOFF_SENT;
  177. } else {
  178. outr(USARTn_BASE + AVR32_USART_THR, (ASCII_XON << AVR32_USART_THR_TXCHR_OFFSET) & AVR32_USART_THR_TXCHR_MASK);
  179. flow_control &= ~XOFF_SENT;
  180. }
  181. flow_control &= ~(XON_PENDING | XOFF_PENDING);
  182. return;
  183. }
  184. if (flow_control & XOFF_RCVD) {
  185. /*
  186. * If XOFF has been received, we disable the transmit interrupts
  187. * and return without sending anything.
  188. */
  189. outr(USARTn_BASE + AVR32_USART_IDR, (1 << AVR32_USART_IDR_TXRDY_OFFSET) & AVR32_USART_IDR_TXRDY_MASK);
  190. inr(USARTn_BASE + AVR32_USART_CSR);
  191. return;
  192. }
  193. if (rbf->rbf_cnt) {
  194. #ifdef UART_CTS_BIT
  195. /*
  196. * If CTS has been disabled, we disable the transmit interrupts
  197. * and return without sending anything.
  198. */
  199. if (cts_sense && bit_is_set(UART_CTS_PIN, UART_CTS_BIT)) {
  200. outr(USARTn_BASE + AVR32_USART_IDR, (1 << AVR32_USART_IDR_TXRDY_OFFSET) & AVR32_USART_IDR_TXRDY_MASK);
  201. inr(USARTn_BASE + AVR32_USART_CSR);
  202. // sbi(EIMSK, UART_CTS_BIT);
  203. return;
  204. }
  205. #endif
  206. rbf->rbf_cnt--;
  207. /*
  208. * Send address in multidrop mode.
  209. */
  210. if (tx_aframe) {
  211. outr(USARTn_BASE + AVR32_USART_CR, inr( USARTn_BASE + AVR32_USART_CR ) | AVR32_USART_CR_SENDA_MASK);
  212. }
  213. /*
  214. * Start transmission of the next character.
  215. */
  216. outr(USARTn_BASE + AVR32_USART_THR, (*cp << AVR32_USART_THR_TXCHR_OFFSET) & AVR32_USART_THR_TXCHR_MASK);
  217. /*
  218. * Wrap around the buffer pointer if we reached its end.
  219. */
  220. if (++cp == rbf->rbf_last) {
  221. cp = rbf->rbf_start;
  222. }
  223. rbf->rbf_tail = cp;
  224. if (rbf->rbf_cnt == rbf->rbf_lwm) {
  225. NutEventPostFromIrq(&rbf->rbf_que);
  226. }
  227. }
  228. /*
  229. * Nothing left to transmit, disable interrupt.
  230. */
  231. else {
  232. outr(USARTn_BASE + AVR32_USART_IDR, (1 << AVR32_USART_IDR_TXRDY_OFFSET) & AVR32_USART_IDR_TXRDY_MASK);
  233. inr(USARTn_BASE + AVR32_USART_CSR);
  234. rbf->rbf_cnt = 0;
  235. NutEventPostFromIrq(&rbf->rbf_que);
  236. }
  237. }
  238. /*
  239. * \brief USARTn receiver ready interrupt handler.
  240. *
  241. *
  242. * \param rbf Pointer to the receiver ring buffer.
  243. */
  244. static void Avr32UsartRxReady(RINGBUF * rbf)
  245. {
  246. register size_t cnt;
  247. register uint8_t ch;
  248. /*
  249. * We read the received character as early as possible to avoid overflows
  250. * caused by interrupt latency.
  251. */
  252. ch = inr(USARTn_BASE + AVR32_USART_RHR) & AVR32_USART_RHR_RXCHR_MASK >> AVR32_USART_RHR_RXCHR_OFFSET;
  253. /* Collect receiver errors. */
  254. rx_errors |= inr(USARTn_BASE + AVR32_USART_CSR) & (AVR32_USART_CSR_OVRE_MASK | AVR32_USART_CSR_FRAME_MASK | AVR32_USART_CSR_PARE_MASK);
  255. /*
  256. * Handle software handshake. We have to do this before checking the
  257. * buffer, because flow control must work in write-only mode, where
  258. * there is no receive buffer.
  259. */
  260. if (flow_control) {
  261. /* XOFF character disables transmit interrupts. */
  262. if (ch == ASCII_XOFF) {
  263. outr(USARTn_BASE + AVR32_USART_IDR, (1 << AVR32_USART_IDR_TXRDY_OFFSET) & AVR32_USART_IDR_TXRDY_MASK);
  264. inr(USARTn_BASE + AVR32_USART_CSR);
  265. flow_control |= XOFF_RCVD;
  266. return;
  267. }
  268. /* XON enables transmit interrupts. */
  269. else if (ch == ASCII_XON) {
  270. outr(USARTn_BASE + AVR32_USART_IER, (1 << AVR32_USART_IDR_TXRDY_OFFSET) & AVR32_USART_IDR_TXRDY_MASK);
  271. flow_control &= ~XOFF_RCVD;
  272. return;
  273. }
  274. }
  275. /*
  276. * Check buffer overflow.
  277. */
  278. cnt = rbf->rbf_cnt;
  279. if (cnt >= rbf->rbf_siz) {
  280. rx_errors |= AVR32_USART_CSR_OVRE_MASK;
  281. return;
  282. }
  283. /* Wake up waiting threads if this is the first byte in the buffer. */
  284. if (cnt++ == 0) {
  285. NutEventPostFromIrq(&rbf->rbf_que);
  286. }
  287. /*
  288. * Check the high watermark for software handshake. If the number of
  289. * buffered bytes is above this mark, then send XOFF.
  290. */
  291. else if (flow_control) {
  292. if (cnt >= rbf->rbf_hwm) {
  293. if ((flow_control & XOFF_SENT) == 0) {
  294. if (inr(USARTn_BASE + AVR32_USART_CSR) & AVR32_USART_CSR_TXRDY_MASK) {
  295. outb(USARTn_BASE + AVR32_USART_THR, ASCII_XOFF);
  296. flow_control |= XOFF_SENT;
  297. flow_control &= ~XOFF_PENDING;
  298. } else {
  299. flow_control |= XOFF_PENDING;
  300. }
  301. }
  302. }
  303. }
  304. #ifdef UART_RTS_BIT
  305. /*
  306. * Check the high watermark for hardware handshake. If the number of
  307. * buffered bytes is above this mark, then disable RTS.
  308. */
  309. else if (rts_control && cnt >= rbf->rbf_hwm) {
  310. sbi(UART_RTS_PORT, UART_RTS_BIT);
  311. }
  312. #endif
  313. /*
  314. * Store the character and increment and the ring buffer pointer.
  315. */
  316. *rbf->rbf_head++ = ch;
  317. if (rbf->rbf_head == rbf->rbf_last) {
  318. rbf->rbf_head = rbf->rbf_start;
  319. }
  320. /* Update the ring buffer counter. */
  321. rbf->rbf_cnt = cnt;
  322. }
  323. /*!
  324. * \brief USART interrupt handler.
  325. *
  326. * \param arg Pointer to the device specific control block.
  327. */
  328. static void Avr32UsartInterrupt(void *arg)
  329. {
  330. USARTDCB *dcb = (USARTDCB *) arg;
  331. ureg_t csr = inr(USARTn_BASE + AVR32_USART_CSR) & AVR32_USART_CSR_MASK;
  332. if (csr & AVR32_USART_CSR_RXRDY_MASK) {
  333. Avr32UsartRxReady(&dcb->dcb_rx_rbf);
  334. }
  335. if (csr & AVR32_USART_CSR_TXRDY_MASK) {
  336. Avr32UsartTxReady(&dcb->dcb_tx_rbf);
  337. }
  338. #ifdef UART_HDX_BIT
  339. if (csr & AVR32_USART_CSR_TXEMPTY_MASK) {
  340. Avr32UsartTxEmpty(&dcb->dcb_tx_rbf);
  341. }
  342. #endif /* UART_HDX_BIT */
  343. }
  344. /*!
  345. * \brief Carefully enable USART hardware functions.
  346. *
  347. * Always enable transmitter and receiver, even on read-only or
  348. * write-only mode. So we can support software flow control.
  349. */
  350. static void Avr32UsartEnable(void)
  351. {
  352. NutEnterCritical();
  353. /* Enable UART receiver and transmitter. */
  354. outr(USARTn_BASE + AVR32_USART_CR, inr(USARTn_BASE + AVR32_USART_CR) | AVR32_USART_CR_RXEN_MASK | AVR32_USART_CR_TXEN_MASK);
  355. /* Enable UART receiver and transmitter interrupts. */
  356. outr(USARTn_BASE + AVR32_USART_IER, AVR32_USART_IER_RXRDY_MASK | AVR32_USART_IER_TXRDY_MASK);
  357. //NutIrqEnable(&SIG_UART);
  358. #ifdef UART_HDX_BIT
  359. if (hdx_control) {
  360. /* Enable transmit complete interrupt. */
  361. outr(USARTn_BASE + AVR32_USART_IER, AVR32_USART_IER_TXEMPTY_MASK);
  362. }
  363. #endif
  364. NutExitCritical();
  365. }
  366. /*!
  367. * \brief Carefully disable USART hardware functions.
  368. */
  369. static void Avr32UsartDisable(void)
  370. {
  371. /*
  372. * Disable USART interrupts.
  373. */
  374. NutEnterCritical();
  375. outr(USARTn_BASE + AVR32_USART_IDR, AVR32_USART_IDR_MASK);
  376. inr(USARTn_BASE + AVR32_USART_CSR);
  377. NutExitCritical();
  378. /*
  379. * Allow incoming or outgoing character to finish.
  380. */
  381. NutDelay(10);
  382. /*
  383. * Disable USART transmit and receive.
  384. */
  385. outr(USARTn_BASE + AVR32_USART_CR, inr(USARTn_BASE + AVR32_USART_CR) | AVR32_USART_CR_RXDIS_MASK | AVR32_USART_CR_TXDIS_MASK);
  386. }
  387. /*!
  388. * \brief Query the USART hardware for the selected speed.
  389. *
  390. * This function is called by ioctl function of the upper level USART
  391. * driver through the USARTDCB jump table.
  392. *
  393. * \return The currently selected baudrate.
  394. */
  395. static uint32_t Avr32UsartGetSpeed(void)
  396. {
  397. uint32_t clk = NutClockGet(NUT_HWCLK_PERIPHERAL_A);
  398. uint32_t cd = inr(USARTn_BASE + AVR32_USART_BRGR) & AVR32_USART_BRGR_CD_MASK >> AVR32_USART_BRGR_CD_OFFSET;
  399. if (inr(USARTn_BASE + AVR32_USART_BRGR) & AVR32_USART_BRGR_FP_MASK) {
  400. cd += ((inr(USARTn_BASE + AVR32_USART_BRGR) & AVR32_USART_BRGR_FP_MASK) >> AVR32_USART_BRGR_FP_OFFSET) / 8;
  401. }
  402. return clk / (8UL * (2 - ((inr(USARTn_BASE + AVR32_USART_MR) & AVR32_USART_MR_OVER_MASK) >> AVR32_USART_MR_OVER_OFFSET)) * cd);
  403. }
  404. /*!
  405. * \brief Set the USART hardware bit rate.
  406. *
  407. * This function is called by ioctl function of the upper level USART
  408. * driver through the USARTDCB jump table.
  409. *
  410. * \param rate Number of bits per second.
  411. *
  412. * \return 0 on success, -1 otherwise.
  413. */
  414. static int Avr32UsartSetSpeed(uint32_t rate)
  415. {
  416. const unsigned long pba_hz = NutClockGet(NUT_HWCLK_PERIPHERAL_A);
  417. const unsigned int over = (pba_hz >= 16 * rate) ? 16 : 8;
  418. const unsigned int cd_fp = ((1 << AVR32_USART_BRGR_FP_SIZE) * pba_hz + (over * rate) / 2) / (over * rate);
  419. const unsigned int cd = cd_fp >> AVR32_USART_BRGR_FP_SIZE;
  420. const unsigned int fp = cd_fp & ((1 << AVR32_USART_BRGR_FP_SIZE) - 1);
  421. if (cd < 1 || cd > (1 << AVR32_USART_BRGR_CD_SIZE) - 1)
  422. return -1;
  423. Avr32UsartDisable();
  424. outr(USARTn_BASE + AVR32_USART_MR, (inr(USARTn_BASE + AVR32_USART_MR) & ~(AVR32_USART_MR_USCLKS_MASK |
  425. AVR32_USART_MR_SYNC_MASK |
  426. AVR32_USART_MR_OVER_MASK)) |
  427. AVR32_USART_MR_USCLKS_MCK << AVR32_USART_MR_USCLKS_OFFSET |
  428. ((over == 16) ? AVR32_USART_MR_OVER_X16 : AVR32_USART_MR_OVER_X8) << AVR32_USART_MR_OVER_OFFSET);
  429. outr(USARTn_BASE + AVR32_USART_BRGR, cd << AVR32_USART_BRGR_CD_OFFSET | fp << AVR32_USART_BRGR_FP_OFFSET);
  430. Avr32UsartEnable();
  431. return 0;
  432. }
  433. /*!
  434. * \brief Query the USART hardware for the number of data bits.
  435. *
  436. * This function is called by ioctl function of the upper level USART
  437. * driver through the USARTDCB jump table.
  438. *
  439. * \return The number of data bits set.
  440. */
  441. static uint8_t Avr32UsartGetDataBits(void)
  442. {
  443. uint8_t val;
  444. if (inr(USARTn_BASE + AVR32_USART_MR) & AVR32_USART_MR_MODE9_MASK) {
  445. val = 9;
  446. } else {
  447. val = ((inr(USARTn_BASE + AVR32_USART_MR) & AVR32_USART_MR_CHRL_MASK) >> AVR32_USART_MR_CHRL_OFFSET) + 5;
  448. }
  449. return (uint8_t) val;
  450. }
  451. /*!
  452. * \brief Set the USART hardware to the number of data bits.
  453. *
  454. * This function is called by ioctl function of the upper level USART
  455. * driver through the USARTDCB jump table.
  456. *
  457. * \return 0 on success, -1 otherwise.
  458. */
  459. static int Avr32UsartSetDataBits(uint8_t bits)
  460. {
  461. Avr32UsartDisable();
  462. if (bits == 9) {
  463. /* Character length set to 9 bits. MODE9 dominates CHRL. */
  464. outr(USARTn_BASE + AVR32_USART_MR, inr(USARTn_BASE + AVR32_USART_MR) | AVR32_USART_MR_MODE9_MASK);
  465. } else {
  466. outr(USARTn_BASE + AVR32_USART_MR, inr(USARTn_BASE + AVR32_USART_MR) | (bits - 5) << AVR32_USART_MR_CHRL_OFFSET);
  467. }
  468. Avr32UsartEnable();
  469. /*
  470. * Verify the result.
  471. */
  472. if (Avr32UsartGetDataBits() != bits) {
  473. return -1;
  474. }
  475. return 0;
  476. }
  477. /*!
  478. * \brief Query the USART hardware for the parity mode.
  479. *
  480. * This routine is called by ioctl function of the upper level USART
  481. * driver through the USARTDCB jump table.
  482. *
  483. * \return Parity mode, either 0 (disabled), 1 (odd), 2 (even) or 9 (multidrop).
  484. */
  485. static uint8_t Avr32UsartGetParity(void)
  486. {
  487. uint8_t val;
  488. if (inr(USARTn_BASE + AVR32_USART_MR) & AVR32_USART_MR_MODE9_MASK) {
  489. val = 9;
  490. } else {
  491. if (((inr(USARTn_BASE + AVR32_USART_MR) & AVR32_USART_MR_PAR_MASK) >> AVR32_USART_MR_PAR_OFFSET) == AVR32_USART_MR_PAR_ODD) {
  492. val = 1;
  493. } else if (((inr(USARTn_BASE + AVR32_USART_MR) & AVR32_USART_MR_PAR_MASK) >> AVR32_USART_MR_PAR_OFFSET) == AVR32_USART_MR_PAR_EVEN) {
  494. val = 2;
  495. } else {
  496. val = 0;
  497. }
  498. }
  499. return val;
  500. }
  501. /*!
  502. * \brief Set the USART hardware to the specified parity mode.
  503. *
  504. * This routine is called by ioctl function of the upper level USART
  505. * driver through the USARTDCB jump table.
  506. *
  507. * \param mode 0 (disabled), 1 (odd) or 2 (even)
  508. *
  509. * \return 0 on success, -1 otherwise.
  510. */
  511. static int Avr32UsartSetParity(uint8_t mode)
  512. {
  513. Avr32UsartDisable();
  514. switch (mode) {
  515. case 0:
  516. outr(USARTn_BASE + AVR32_USART_MR, AVR32_USART_MR_PAR_NONE << AVR32_USART_MR_PAR_OFFSET);
  517. break;
  518. case 1:
  519. outr(USARTn_BASE + AVR32_USART_MR, AVR32_USART_MR_PAR_ODD << AVR32_USART_MR_PAR_OFFSET);
  520. break;
  521. case 2:
  522. outr(USARTn_BASE + AVR32_USART_MR, AVR32_USART_MR_PAR_EVEN << AVR32_USART_MR_PAR_OFFSET);
  523. break;
  524. }
  525. Avr32UsartEnable();
  526. /*
  527. * Verify the result.
  528. */
  529. if (Avr32UsartGetParity() != mode) {
  530. return -1;
  531. }
  532. return 0;
  533. }
  534. /*!
  535. * \brief Query the USART hardware for the number of stop bits.
  536. *
  537. * This routine is called by ioctl function of the upper level USART
  538. * driver through the USARTDCB jump table.
  539. *
  540. * \return The number of stop bits set, either 1, 2 or 3 (1.5 bits).
  541. */
  542. static uint8_t Avr32UsartGetStopBits(void)
  543. {
  544. switch (inr(USARTn_BASE + AVR32_USART_MR) & AVR32_USART_MR_NBSTOP_MASK >> AVR32_USART_MR_NBSTOP_OFFSET) {
  545. case AVR32_USART_MR_NBSTOP_1:
  546. return 1;
  547. case AVR32_USART_MR_NBSTOP_2:
  548. return 2;
  549. case AVR32_USART_MR_NBSTOP_1_5:
  550. return 3;
  551. }
  552. return 0;
  553. }
  554. /*!
  555. * \brief Set the USART hardware to the number of stop bits.
  556. *
  557. * This routine is called by ioctl function of the upper level USART
  558. * driver through the USARTDCB jump table.
  559. *
  560. * \return 0 on success, -1 otherwise.
  561. */
  562. static int Avr32UsartSetStopBits(uint8_t bits)
  563. {
  564. Avr32UsartDisable();
  565. switch (bits) {
  566. case 1:
  567. outr(USARTn_BASE + AVR32_USART_MR, inr(USARTn_BASE + AVR32_USART_MR) | AVR32_USART_MR_NBSTOP_1 << AVR32_USART_NBSTOP_OFFSET);
  568. break;
  569. case 2:
  570. outr(USARTn_BASE + AVR32_USART_MR, inr(USARTn_BASE + AVR32_USART_MR) | AVR32_USART_MR_NBSTOP_2 << AVR32_USART_NBSTOP_OFFSET);
  571. break;
  572. case 3:
  573. outr(USARTn_BASE + AVR32_USART_MR, inr(USARTn_BASE + AVR32_USART_MR) | AVR32_USART_MR_NBSTOP_1_5 << AVR32_USART_NBSTOP_OFFSET);
  574. break;
  575. }
  576. Avr32UsartEnable();
  577. /*
  578. * Verify the result.
  579. */
  580. if (Avr32UsartGetStopBits() != bits) {
  581. return -1;
  582. }
  583. return 0;
  584. }
  585. /*!
  586. * \brief Query the USART hardware status.
  587. *
  588. * \return Status flags.
  589. */
  590. static uint32_t Avr32UsartGetStatus(void)
  591. {
  592. uint32_t rc = 0;
  593. #if defined(US_MODE_HWHANDSHAKE)
  594. uint32_t csr = inr(USARTn_BASE + AVR32_USART_CSR);
  595. #endif
  596. /*
  597. * Set receiver error flags.
  598. */
  599. if ((rx_errors & AVR32_USART_CSR_FRAME_MASK) != 0) {
  600. rc |= UART_FRAMINGERROR;
  601. }
  602. if ((rx_errors & AVR32_USART_CSR_OVRE_MASK) != 0) {
  603. rc |= UART_OVERRUNERROR;
  604. }
  605. if ((rx_errors & AVR32_USART_CSR_PARE_MASK) != 0) {
  606. rc |= UART_PARITYERROR;
  607. }
  608. /*
  609. * Determine software handshake status. The flow control status may
  610. * change during interrupt, but this doesn't really hurt us.
  611. */
  612. if (flow_control) {
  613. if (flow_control & XOFF_SENT) {
  614. rc |= UART_RXDISABLED;
  615. }
  616. if (flow_control & XOFF_RCVD) {
  617. rc |= UART_TXDISABLED;
  618. }
  619. }
  620. /*
  621. * Determine hardware handshake control status.
  622. */
  623. #if defined(UART_RTS_BIT)
  624. if (bit_is_set(UART_RTS_PORT, UART_RTS_BIT)) {
  625. rc |= UART_RTSDISABLED;
  626. if (rts_control) {
  627. rc |= UART_RXDISABLED;
  628. }
  629. } else {
  630. rc |= UART_RTSENABLED;
  631. }
  632. #elif defined(US_MODE_HWHANDSHAKE)
  633. /* How to find out? */
  634. #endif
  635. /*
  636. * Determine hardware handshake sense status.
  637. */
  638. #ifdef UART_CTS_BIT
  639. if (bit_is_set(UART_CTS_PIN, UART_CTS_BIT)) {
  640. rc |= UART_CTSDISABLED;
  641. if (cts_sense) {
  642. rc |= UART_RXDISABLED;
  643. }
  644. } else {
  645. rc |= UART_CTSENABLED;
  646. }
  647. #elif defined(US_MODE_HWHANDSHAKE)
  648. if (csr & AVR32_USART_CSR_CTS_MASK) {
  649. rc |= UART_CTSDISABLED;
  650. if (cts_sense) {
  651. rc |= UART_RXDISABLED;
  652. }
  653. } else {
  654. rc |= UART_CTSENABLED;
  655. }
  656. #endif
  657. /*
  658. * Determine hardware modem sense status.
  659. */
  660. #if defined(US_MODE_HWHANDSHAKE) && 0
  661. /* I'm confused. Awful flag mismatch? Why do we have uart.h and usart.h? */
  662. if (csr & AVR32_USART_CSR_RI_MASK) {
  663. rc |= UART_RIDISABLED;
  664. } else {
  665. rc |= UART_RIENABLED;
  666. }
  667. if (csr & AVR32_USART_CSR_DSR_MASK) {
  668. rc |= UART_DSRDISABLED;
  669. } else {
  670. rc |= UART_DSRENABLED;
  671. }
  672. if (csr & AVR32_USART_CSR_DCD_MASK) {
  673. rc |= UART_DCDDISABLED;
  674. } else {
  675. rc |= UART_DCDENABLED;
  676. }
  677. #endif
  678. /*
  679. * If transmitter and receiver haven't been detected disabled by any
  680. * of the checks above, then they are probably enabled.
  681. */
  682. if ((rc & UART_RXDISABLED) == 0) {
  683. rc |= UART_RXENABLED;
  684. }
  685. if ((rc & UART_TXDISABLED) == 0) {
  686. rc |= UART_TXENABLED;
  687. }
  688. /*
  689. * Process multidrop setting.
  690. */
  691. if (tx_aframe) {
  692. rc |= UART_TXADDRFRAME;
  693. } else {
  694. rc |= UART_TXNORMFRAME;
  695. }
  696. return rc;
  697. }
  698. /*!
  699. * \brief Set the USART hardware status.
  700. *
  701. * \param flags Status flags.
  702. *
  703. * \return 0 on success, -1 otherwise.
  704. */
  705. static int Avr32UsartSetStatus(uint32_t flags)
  706. {
  707. /*
  708. * Process software handshake control.
  709. */
  710. if (flow_control) {
  711. /* Access to the flow control status must be atomic. */
  712. NutEnterCritical();
  713. /*
  714. * Enabling or disabling the receiver means to behave like
  715. * having sent a XON or XOFF character resp.
  716. */
  717. if (flags & UART_RXENABLED) {
  718. flow_control &= ~XOFF_SENT;
  719. } else if (flags & UART_RXDISABLED) {
  720. flow_control |= XOFF_SENT;
  721. }
  722. /*
  723. * Enabling or disabling the transmitter means to behave like
  724. * having received a XON or XOFF character resp.
  725. */
  726. if (flags & UART_TXENABLED) {
  727. flow_control &= ~XOFF_RCVD;
  728. } else if (flags & UART_TXDISABLED) {
  729. flow_control |= XOFF_RCVD;
  730. }
  731. NutExitCritical();
  732. }
  733. /*
  734. * Process hardware handshake control.
  735. */
  736. #if defined(UART_RTS_BIT)
  737. /* Manually controlled via GPIO. */
  738. if (rts_control) {
  739. if (flags & UART_RXDISABLED) {
  740. sbi(UART_RTS_PORT, UART_RTS_BIT);
  741. }
  742. if (flags & UART_RXENABLED) {
  743. cbi(UART_RTS_PORT, UART_RTS_BIT);
  744. }
  745. }
  746. if (flags & UART_RTSDISABLED) {
  747. sbi(UART_RTS_PORT, UART_RTS_BIT);
  748. }
  749. if (flags & UART_RTSENABLED) {
  750. cbi(UART_RTS_PORT, UART_RTS_BIT);
  751. }
  752. #elif defined(US_MODE_HWHANDSHAKE)
  753. /* Build in hardware. */
  754. if (rts_control) {
  755. if (flags & UART_RXDISABLED) {
  756. USARTn_BASE.CR.rtsdis = 1;
  757. }
  758. if (flags & UART_RXENABLED) {
  759. USARTn_BASE.CR.rtsen = 1;
  760. }
  761. }
  762. if (flags & UART_RTSDISABLED) {
  763. USARTn_BASE.CR.rtsdis = 1;
  764. }
  765. if (flags & UART_RTSENABLED) {
  766. USARTn_BASE.CR.rtsen = 1;
  767. }
  768. #endif
  769. /*
  770. * Process hardware modem control.
  771. */
  772. #if defined(UART_DTR_BIT)
  773. /* Manually controlled via GPIO. */
  774. if (flags & UART_DTRDISABLED) {
  775. sbi(UART_DTR_PORT, UART_DTR_BIT);
  776. }
  777. if (flags & UART_DTRENABLED) {
  778. cbi(UART_DTR_PORT, UART_DTR_BIT);
  779. }
  780. #elif defined(US_MODE_HWHANDSHAKE)
  781. /* Build in hardware. */
  782. if (flags & UART_DTRDISABLED) {
  783. USARTn_BASE.CR.dtrdis = 1;
  784. }
  785. if (flags & UART_DTRENABLED) {
  786. USARTn_BASE.CR.dtren = 1;
  787. }
  788. #endif
  789. /*
  790. * Process multidrop setting.
  791. */
  792. if (flags & UART_TXADDRFRAME) {
  793. tx_aframe = 1;
  794. }
  795. if (flags & UART_TXNORMFRAME) {
  796. tx_aframe = 0;
  797. }
  798. /*
  799. * Clear UART receive errors.
  800. */
  801. if (flags & UART_ERRORS) {
  802. outr(USARTn_BASE + AVR32_USART_CR, inr(USARTn_BASE + AVR32_USART_CR) | AVR32_USART_CR_RSTSTA_MASK);
  803. }
  804. /*
  805. * Verify the result.
  806. */
  807. if ((Avr32UsartGetStatus() & ~UART_ERRORS) != flags) {
  808. return -1;
  809. }
  810. return 0;
  811. }
  812. /*!
  813. * \brief Query the USART hardware for synchronous mode.
  814. *
  815. * This function is called by ioctl function of the upper level USART
  816. * driver through the USARTDCB jump table.
  817. *
  818. * \return Or-ed combination of \ref UART_SYNC, \ref UART_MASTER,
  819. * \ref UART_NCLOCK and \ref UART_HIGHSPEED.
  820. */
  821. static uint8_t Avr32UsartGetClockMode(void)
  822. {
  823. uint8_t rc = 0;
  824. return rc;
  825. }
  826. /*!
  827. * \brief Set asynchronous or synchronous mode.
  828. *
  829. * This function is called by ioctl function of the upper level USART
  830. * driver through the USARTDCB jump table.
  831. *
  832. * \param mode Must be an or-ed combination of USART_SYNC, USART_MASTER,
  833. * USART_NCLOCK and USART_HIGHSPEED.
  834. *
  835. * \return 0 on success, -1 otherwise.
  836. */
  837. static int Avr32UsartSetClockMode(uint8_t mode)
  838. {
  839. /*
  840. * Verify the result.
  841. */
  842. if (Avr32UsartGetClockMode() != mode) {
  843. return -1;
  844. }
  845. return 0;
  846. }
  847. /*!
  848. * \brief Query flow control mode.
  849. *
  850. * This routine is called by ioctl function of the upper level USART
  851. * driver through the USARTDCB jump table.
  852. *
  853. * \return See UsartIOCtl().
  854. */
  855. static uint32_t Avr32UsartGetFlowControl(void)
  856. {
  857. uint32_t rc = 0;
  858. if (flow_control) {
  859. rc |= USART_MF_XONXOFF;
  860. } else {
  861. rc &= ~USART_MF_XONXOFF;
  862. }
  863. #ifdef UART_RTS_BIT
  864. if (rts_control) {
  865. rc |= USART_MF_RTSCONTROL;
  866. } else {
  867. rc &= ~USART_MF_RTSCONTROL;
  868. }
  869. #endif
  870. #ifdef UART_CTS_BIT
  871. if (cts_sense) {
  872. rc |= USART_MF_CTSSENSE;
  873. } else {
  874. rc &= ~USART_MF_CTSSENSE;
  875. }
  876. #endif
  877. #ifdef UART_HDX_BIT
  878. if (hdx_control) {
  879. rc |= USART_MF_HALFDUPLEX;
  880. } else {
  881. rc &= ~USART_MF_HALFDUPLEX;
  882. }
  883. #endif
  884. return rc;
  885. }
  886. /*!
  887. * \brief Set flow control mode.
  888. *
  889. * This function is called by ioctl function of the upper level USART
  890. * driver through the USARTDCB jump table.
  891. *
  892. * \param flags See UsartIOCtl().
  893. *
  894. * \return 0 on success, -1 otherwise.
  895. */
  896. static int Avr32UsartSetFlowControl(uint32_t flags)
  897. {
  898. /*
  899. * Set software handshake mode.
  900. */
  901. if (flags & USART_MF_XONXOFF) {
  902. if (flow_control == 0) {
  903. NutEnterCritical();
  904. flow_control = 1 | XOFF_SENT; /* force XON to be sent on next read */
  905. NutExitCritical();
  906. }
  907. } else {
  908. NutEnterCritical();
  909. flow_control = 0;
  910. NutExitCritical();
  911. }
  912. /*
  913. * Set RTS control mode.
  914. */
  915. if (flags & USART_MF_RTSCONTROL) {
  916. #if defined(UART_RTS_BIT)
  917. sbi(UART_RTS_PORT, UART_RTS_BIT);
  918. sbi(UART_RTS_DDR, UART_RTS_BIT);
  919. rts_control = 1;
  920. #endif
  921. } else if (rts_control) {
  922. rts_control = 0;
  923. #if defined(UART_RTS_BIT)
  924. cbi(UART_RTS_DDR, UART_RTS_BIT);
  925. #endif
  926. }
  927. /*
  928. * Set CTS sense mode.
  929. */
  930. if (flags & USART_MF_CTSSENSE) {
  931. #if defined(UART_CTS_BIT)
  932. /* Register CTS sense interrupt. */
  933. if (NutRegisterIrqHandler(&UART_CTS_SIGNAL, Avr32UsartCts, 0)) {
  934. return -1;
  935. }
  936. sbi(UART_CTS_PORT, UART_CTS_BIT);
  937. cbi(UART_CTS_DDR, UART_CTS_BIT);
  938. cts_sense = 1;
  939. #elif defined(US_MODE_HWHANDSHAKE)
  940. outr(USARTn_BASE + AVR32_USART_MR, inr(USARTn_BASE + AVR32_USART_MR) | (AVR32_USART_MR_MODE_HARDWARE << AVR32_USART_MR_MODE_OFFSET) );
  941. cts_sense = 1;
  942. rts_control = 1;
  943. #endif
  944. } else if (cts_sense) {
  945. #if defined(UART_CTS_BIT)
  946. /* Deregister CTS sense interrupt. */
  947. NutRegisterIrqHandler(&UART_CTS_SIGNAL, 0, 0);
  948. cbi(UART_CTS_DDR, UART_CTS_BIT);
  949. #elif defined(US_MODE_HWHANDSHAKE)
  950. outr(USARTn_BASE + AVR32_USART_MR, inr(USARTn_BASE + AVR32_USART_MR) | (AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET) );
  951. rts_control = 0;
  952. #endif
  953. cts_sense = 0;
  954. }
  955. #ifdef UART_HDX_BIT
  956. /*
  957. * Set half duplex mode.
  958. */
  959. if (flags & USART_MF_HALFDUPLEX) {
  960. /* Register transmit complete interrupt. */
  961. if (NutRegisterIrqHandler(&sig_UART_TRANS, Avr32UsartTxComplete, &dcb_usart.dcb_rx_rbf)) {
  962. return -1;
  963. }
  964. /* Initially enable the receiver. */
  965. UART_HDX_RX(UART_HDX_PORT, UART_HDX_BIT);
  966. sbi(UART_HDX_DDR, UART_HDX_BIT);
  967. hdx_control = 1;
  968. /* Enable transmit complete interrupt. */
  969. sbi(UCSRnB, TXCIE);
  970. } else if (hdx_control) {
  971. hdx_control = 0;
  972. /* disable transmit complete interrupt */
  973. cbi(UCSRnB, TXCIE);
  974. /* Deregister transmit complete interrupt. */
  975. NutRegisterIrqHandler(&sig_UART_TRANS, 0, 0);
  976. cbi(UART_HDX_DDR, UART_HDX_BIT);
  977. }
  978. #endif
  979. /*
  980. * Verify the result.
  981. */
  982. if (Avr32UsartGetFlowControl() != flags) {
  983. return -1;
  984. }
  985. return 0;
  986. }
  987. /*!
  988. * \brief Start the USART transmitter hardware.
  989. *
  990. * The upper level USART driver will call this function through the
  991. * USARTDCB jump table each time it added one or more bytes to the
  992. * transmit buffer.
  993. */
  994. static void Avr32UsartTxStart(void)
  995. {
  996. #ifdef UART_HDX_BIT
  997. if (hdx_control) {
  998. /* Enable half duplex transmitter. */
  999. UART_HDX_TX(UART_HDX_PORT, UART_HDX_BIT);
  1000. }
  1001. #endif
  1002. /* Enable transmit interrupts. */
  1003. outr(USARTn_BASE + AVR32_USART_IER, AVR32_USART_IER_TXRDY_MASK);
  1004. }
  1005. /*!
  1006. * \brief Start the USART receiver hardware.
  1007. *
  1008. * The upper level USART driver will call this function through the
  1009. * USARTDCB jump table each time it removed enough bytes from the
  1010. * receive buffer. Enough means, that the number of bytes left in
  1011. * the buffer is below the low watermark.
  1012. */
  1013. static void Avr32UsartRxStart(void)
  1014. {
  1015. /*
  1016. * Do any required software flow control.
  1017. */
  1018. if (flow_control && (flow_control & XOFF_SENT) != 0) {
  1019. NutEnterCritical();
  1020. if (inr(USARTn_BASE + AVR32_USART_CSR) & AVR32_USART_CSR_TXRDY) {
  1021. outr(USARTn_BASE + AVR32_USART_THR, (ASCII_XON << AVR32_USART_THR_TXCHR_OFFSET) & AVR32_USART_THR_TXCHR_MASK );
  1022. flow_control &= ~XON_PENDING;
  1023. } else {
  1024. flow_control |= XON_PENDING;
  1025. }
  1026. flow_control &= ~(XOFF_SENT | XOFF_PENDING);
  1027. NutExitCritical();
  1028. }
  1029. #ifdef UART_RTS_BIT
  1030. if (rts_control) {
  1031. /* Enable RTS. */
  1032. cbi(UART_RTS_PORT, UART_RTS_BIT);
  1033. }
  1034. #endif
  1035. }
  1036. /*
  1037. * \brief Initialize the USART hardware driver.
  1038. *
  1039. * This function is called during device registration by the upper level
  1040. * USART driver through the USARTDCB jump table.
  1041. *
  1042. * \return 0 on success, -1 otherwise.
  1043. */
  1044. static int Avr32UsartInit(void)
  1045. {
  1046. /*
  1047. * Register receive and transmit interrupts.
  1048. */
  1049. if (NutRegisterIrqHandler(&SIG_UART, Avr32UsartInterrupt, &dcb_usart)) {
  1050. return -1;
  1051. }
  1052. /* Disable GPIO on UART tx/rx pins. */
  1053. gpio_enable_module_pin(USART_RX_PIN, USART_RX_FUNCTION);
  1054. gpio_enable_module_pin(USART_TX_PIN, USART_TX_FUNCTION);
  1055. /* Disable all USART interrupts.
  1056. ** Interrupts needed should be set explicitly on every reset. */
  1057. outr(USARTn_BASE + AVR32_USART_IDR, AVR32_USART_IDR_MASK);
  1058. inr(USARTn_BASE + AVR32_USART_CSR);
  1059. /* Reset mode and other registers that could cause unpredictable behavior after reset. */
  1060. outr(USARTn_BASE + AVR32_USART_MR, 0);
  1061. outr(USARTn_BASE + AVR32_USART_RTOR, 0);
  1062. outr(USARTn_BASE + AVR32_USART_TTGR, 0);
  1063. /* Shutdown TX and RX (will be re-enabled when setup has successfully completed),
  1064. ** reset status bits and turn off DTR and RTS. */
  1065. outr(USARTn_BASE + AVR32_USART_CR, AVR32_USART_CR_RSTRX_MASK |
  1066. AVR32_USART_CR_RSTTX_MASK | AVR32_USART_CR_RSTSTA_MASK |
  1067. AVR32_USART_CR_RSTIT_MASK | AVR32_USART_CR_RSTNACK_MASK |
  1068. #ifdef AVR32_USART_CR_DTRDIS_MASK
  1069. AVR32_USART_CR_DTRDIS_MASK |
  1070. #endif
  1071. AVR32_USART_CR_RTSDIS_MASK);
  1072. outr(USARTn_BASE + AVR32_USART_MR, inr(USARTn_BASE + AVR32_USART_MR) | (8 - 5) << AVR32_USART_MR_CHRL_OFFSET | /* 8 bit character length */
  1073. AVR32_USART_MR_PAR_NONE << AVR32_USART_MR_PAR_OFFSET | /* No parity */
  1074. AVR32_USART_MR_CHMODE_NORMAL << AVR32_USART_MR_CHMODE_OFFSET | AVR32_USART_MR_NBSTOP_1 << AVR32_USART_MR_NBSTOP_OFFSET);
  1075. /* Set normal mode. */
  1076. outr(USARTn_BASE + AVR32_USART_MR, (inr(USARTn_BASE + AVR32_USART_MR) & ~AVR32_USART_MR_MODE_MASK) | AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET);
  1077. /* Enable input and output. */
  1078. outr(USARTn_BASE + AVR32_USART_CR, inr(USARTn_BASE + AVR32_USART_CR) | AVR32_USART_CR_RXEN_MASK | AVR32_USART_CR_TXEN_MASK);
  1079. return 0;
  1080. }
  1081. /*
  1082. * \brief Deinitialize the USART hardware driver.
  1083. *
  1084. * This function is called during device deregistration by the upper
  1085. * level USART driver through the USARTDCB jump table.
  1086. *
  1087. * \return 0 on success, -1 otherwise.
  1088. */
  1089. static int Avr32UsartDeinit(void)
  1090. {
  1091. /* Deregister receive and transmit interrupts. */
  1092. NutRegisterIrqHandler(&SIG_UART, 0, 0);
  1093. /* Shutdown TX and RX (will be re-enabled when setup has successfully completed),
  1094. ** reset status bits and turn off DTR and RTS. */
  1095. outr(USARTn_BASE + AVR32_USART_CR, AVR32_USART_CR_RSTRX_MASK |
  1096. AVR32_USART_CR_RSTTX_MASK | AVR32_USART_CR_RSTSTA_MASK |
  1097. AVR32_USART_CR_RSTIT_MASK | AVR32_USART_CR_RSTNACK_MASK |
  1098. #ifdef AVR32_USART_CR_DTRDIS_MASK
  1099. AVR32_USART_CR_DTRDIS_MASK |
  1100. #endif
  1101. AVR32_USART_CR_RTSDIS_MASK);
  1102. /* Disable all UART interrupts. */
  1103. outr(USARTn_BASE + AVR32_USART_IDR, AVR32_USART_IDR_MASK);
  1104. inr(USARTn_BASE + AVR32_USART_CSR);
  1105. /* Disable UART clock. */
  1106. /* Enable GPIO on UART tx/rx pins. */
  1107. /*
  1108. * Disabling flow control shouldn't be required here, because it's up
  1109. * to the upper level to do this on the last close or during
  1110. * deregistration.
  1111. */
  1112. #ifdef UART_HDX_BIT
  1113. /* Deregister transmit complete interrupt. */
  1114. if (hdx_control) {
  1115. hdx_control = 0;
  1116. NutRegisterIrqHandler(&sig_UART_TRANS, 0, 0);
  1117. }
  1118. #endif
  1119. #ifdef UART_CTS_BIT
  1120. if (cts_sense) {
  1121. cts_sense = 0;
  1122. cbi(UART_CTS_DDR, UART_CTS_BIT);
  1123. /* Deregister CTS sense interrupt. */
  1124. NutRegisterIrqHandler(&UART_CTS_SIGNAL, 0, 0);
  1125. }
  1126. #endif
  1127. #ifdef UART_RTS_BIT
  1128. if (rts_control) {
  1129. rts_control = 0;
  1130. cbi(UART_RTS_DDR, UART_RTS_BIT);
  1131. }
  1132. #endif
  1133. return 0;
  1134. }
  1135. /*@}*/